

 [image: _images/xmppflask.png]
XmppFlask is easy to use XMPP framework that is inspired (heavily) by
Flask [http://flask.pocoo.org]. It is intended to be as easy to use
as Flask itself is.

XmppFlask

XmppFlask is easy to start with

The main idea is to make you happy with writing small jabber bots. Like this:

from xmppflask import XmppFlask
app = XmppFlask(__name__)

@app.route(u'ping')
def ping():
 return u'pong'

Source Code

Source code is available via bitbucket
https://bitbucket.org/k_bx/xmppflask.

Status

It’s in status of ideal suitability for “use and help polishing it”,
since some obvious improvements could be done.

Authors

Original author is Konstantine Rybnikov [http://redhotchilipython.com]. Current main developer is Alexander
Shorin [https://bitbucket.org/kxepal]

Great thanks to contributors:

	Brendan McCollam [https://bitbucket.org/bjmc]

Feel free to be the next one.

Community

Join us at jabber conference xmppflask@conference.jabber.org for
discussions. Homepage is located at http://xmppflask.org.

Where should I go next?

You can go directly to Introduction.

Contents:

	Introduction
	Installation

	Writing simple application

	Overview
	Routing

	Rendering Templates

	Logging

	Sessions

	And more

	XMPPWSGI

	Testing

Indices and tables

	Index

	Module Index

	Search Page

[image:]

Introduction

XmppFlask is considered to be simple (it might be not there yet, but we are
constantly working no it).

So let’s begin with “hello world” app.

Installation

Note

We use PyPy [http://pypy.org] interpreter to run things, but you may
want to use standard CPython instead.

Installing pypy

Go to http://pypy.org , download latest pypy, unpack it somewhere and make

sudo ln -s /absolute/path/to/pypy/bin/pypy /usr/local/bin/pypy

Now create a virtual environment for you application. First install latest
virtualenv to do that:

sudo easy_install --upgrade virtualenv

Then create an environment:

mkdir ~/v
virtualenv -p /usr/local/bin/pypy ~/v/ping-env

Now go ahead and activate that environment:

source ~/v/ping-env/bin/activate

From now on you can install things and they will only harm your virtual
environment.

Installing XmppFlask

Right now the simplest way is just to clone the source repository

hg clone https://k_bx@bitbucket.org/k_bx/xmppflask
cd xmppflask
python setup.py install

Writing simple application

cd to your project’s folder (like ~/workspace/pingpong and write file
called pingpong.py

-*- coding: utf-8 -*-

from xmppflask import XmppFlask
app = XmppFlask(__name__)

@app.route(u'ping')
def ping():
 return u'pong'

This small app responses “pong” to every “ping” message it gets. Now we need
to run that somehow.

If you have setuptools [http://pypi.python.org/pypi/setuptools] package
installed the simplest way to run your XMPPWSGI app would be using xmppflask
console script. The other way to run your app is
python path/to/xmppflask/run.py - xmppflask is just handy shortcut.

xmppflask --jid xmppflask@example.com \
--password isecretlyusedjango ./pingpong.py:app

Note

You need to already have xmppflask@example.com jabber account with that
strange password.

Warning

Passing JID and his password as command line arguments may be not very
secure idea. As alternative solution, you could set them via
XMPPFLASK_JID and XMPPFLASK_PASSWORD environment variables. Also you
may skip this arguments - they will be asked to be prompted from tty.

Now run that and you should see something like this:

(xmpp)kost@kost-narwhal:~/workspace/pingpong$ xmppflask \
--jid xmppflask@example.com --password isecretlyusedjango ./pingpong.py:app
INFO:root:connecting...
INFO:root:done.
WARNING:root:Unable to establish secure connection - TLS failed!
INFO:root:> bot started!

Now go ahead and write something to our bot. Pidgin can be your friend!

[image: _images/pidgin.png]
[image: _images/xmppflask_talk_ping.png]
Great! Now you can go to Overview page and see what else is there.

[image:]

Overview

Basic idea behind XmppFlask is being as simlpe as Flask is. So let’s start from
a simple application.

-*- coding: utf-8 -*-

from xmppflask import XmppFlask
app = XmppFlask(__name__)

@app.route(u'ping')
def ping():
 return u'pong'

Routing

Routing is pretty much the same as in Flask
http://flask.pocoo.org/docs/quickstart/#routing:

@app.route(u'ping <user> <int:n> times')
def ping(user, n):
 return u'ponged %s %s times' % (user, n)

Rendering Templates

Take a look at http://flask.pocoo.org/docs/quickstart/#rendering-templates

@app.route(u'ping')
def ping():
 return render_template(u'ping.html')

Logging

http://flask.pocoo.org/docs/quickstart/#logging

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

Sessions

You may keep session context for each user that interacts with your app. Just
define session interface:

from xmppflask import XmppFlask
from xmppflask.session import MemorySessionInterface
from xmppflask import session

app = XmppFlask(__name__)
app.session_interface = MemorySessionInterface()

@app.route(u'ping')
def ping():
 if 'seq' not in session:
 session['seq'] = 0
 session['seq'] += 1
 return u"ping seq %d. PONG!" % session['seq']

And more

As in Flask you can do things like this:

@app.before_request
def before_request():
 g.db = connect_db()

@app.teardown_request
def teardown_request(exception):
 g.db.close()

XMPPWSGI

In XmppFlask there’s a thing called XMPPWSGI. Basically it’s a “WSGI for XMPP”
(as you already might have guessed). To read about the whole WSGI idea you
can go and read PEP 333 [http://www.python.org/dev/peps/pep-0333/]. In
XMPPWSGI, your application should be something like this (could be changed
in near time):

def xmppwsgi_app(self, environ, notification_queue):
 notification_queue.append(
 [('user1@gmail.com', 'notification 1'),
 ('user2@gmail.com', 'notification 2')])
 return u'response to user'

This code is a simple XMPPWSGI app that responses to user by string
“response to user” and also says to XMPPWSGI server to send messages
to user1@gmail.com and user2@gmail.com.

Testing

Just run nosetests inside environment.

[image:]

Index

[image:]

 _static/pidgin.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/xmppflask_talk_ping.png
© xmppflask@e... x
xmeplre e @ xmppFlask@example.com

(22221:45) xmpp@example.com/00396300-h22b-af cd-9957-e5d2360¢93¢a: ping

(2221:45) xmppflask@example.com: pong

(22221:54) xmpp@example.com/00396300-b22b-afcd-9957-e5d2360¢93ca: more

(22:21:54) xmppFlask@example.com: Message not understood. Try help.

@ Wpndt 4 Barasuts @ Cmaitnnk! @ Bunmanme!

_static/ajax-loader.gif

_static/file.png

_static/comment-bright.png

_static/up-pressed.png

_static/comment-close.png

_images/xmppflask_talk_ping.png
© xmppflask@e... x
xmeplre e @ xmppFlask@example.com

(22221:45) xmpp@example.com/00396300-h22b-af cd-9957-e5d2360¢93¢a: ping

(2221:45) xmppflask@example.com: pong

(22221:54) xmpp@example.com/00396300-b22b-afcd-9957-e5d2360¢93ca: more

(22:21:54) xmppFlask@example.com: Message not understood. Try help.

@ Wpndt 4 Barasuts @ Cmaitnnk! @ Bunmanme!

_images/xmppflask.png

_static/up.png

_static/xmppflask.png

nav.xhtml

 Table of Contents

 		XmppFlask

 		Introduction

 		Installation

 		Installing pypy

 		Installing XmppFlask

 		Writing simple application

 		Overview

 		Routing

 		Rendering Templates

 		Logging

 		Sessions

 		And more

 		XMPPWSGI

 		Testing

_images/pidgin.png

_static/xmppflask_72x30.png
xc¥yFask

_static/comment.png

_static/down.png

